Design, Synthesis, Characterization and Anti-Fungal Exertion 2-Chloroquinoline-Thazolidinedione Derivatives
DOI:
https://doi.org/10.32628/IJSRCH251062Keywords:
2-chloroquinoline-3-carbaldehyde, 2,4-thiazolidinedione, synthesis, antifungalAbstract
A variety of new compounds have been integrated into the structural framework of (5Z)-5-[(2-(4-phenylpiperazin-1yl)quinoline-3-yl)methyl]-1,3-thiazolidine-2,4-dione. The synthesis of 1,3-thiazolidine-2,4-dione was accomplished by means of the condensation of 2-chloroquinoline, which later functioned as a pivotal reagent in the reaction with 3-carbaldehydes, resulting in the production of 2,4-thiazolidinedione. Chemical identification was achieved by using elemental analysis, Fourier-transform infrared spectroscopy (FT-IR), and proton nuclear magnetic resonance spectroscopy (1H-NMR). Additionally, the synthesized compounds were subjected to in vitro testing to assess their antifungal activity against a range of pathogens, such as A. niger, C. albicans.
References
Brown FC, 4-tiazolidinones, Chem. Rev. 1961, 61, 5, 463-521, doi.org/10.1021/cr60213a002 DOI: https://doi.org/10.1021/cr60213a002
Lesyk RB, Zimenkovsky BS, 4-Thiazolidones: Centenarian History, Current Status and Perspectives for Modern Organic and Medicinal Chemistry, Curr. Org. Chem. 2004, 8, 16, 1547-1577. doi: 10.2174/1385272043369773 DOI: https://doi.org/10.2174/1385272043369773
Malamas MS, Sredy J, Gunawan I, Mihan B, Sawicki, Bull. Korean Chem. Soc. 2010, Vol. 31, No. 7
Oguchi M, Wada K, Honma H, Kaneko A, Teneko T, Sakakibara S, Ohsumi J, Serizawa N, Fujiwara T, Horikoshi H, Fujita T, Molecular design, synthesis, and hypoglycemic activity of a series of thiazolidine-2,4-diones. J. Med. Chem. 2000, 43, 16, 3052-3066. doi: 10.1021/jm990522t. DOI: https://doi.org/10.1021/jm990522t
Yoshioka T, Fujita T, Kanai T, Aizawa Y, Kurumada T, Hasegawa K, Horikoshi H, J. Med. Chem. 1989, 32, 421-426. DOI: https://doi.org/10.1021/jm00122a022
Clark DA, Goldstein SW, Volkmann RA, Eggler JF, Holland GF, Hulin B, Stevenson RW, Kreutter DK, Krupp MN, Substituted dihydrobenzopyran and dihydrobenzofuran thiazolidine-2,4-diones as hypoglycemic agents J. Med. Chem. 1991, 34, 1, 319-325. doi: 10.1021/jm00105a050 DOI: https://doi.org/10.1021/jm00105a050
Momose Yu, Meguro K, Ikeda H, Hatanaka C, Satoru Oi, Sohda T, Studies on antidiabetic agents. X. Synthesis and biological activities of Pioglitazone and related compounds, Chem. Pharm. Bull. 1991, 39, 1440-1445. doi: 10.1248/cpb.39.1440 DOI: https://doi.org/10.1248/cpb.39.1440
Cantello BCC, Cawthorne MA, Haigh D, Hindley RM, Smith SA, Thurby PL, The synthesis of BRL 49653- a novel and potent antihyperglycaemic agent, Bioorg. Med. Chem. Lett. 1994, 4, 1181-1184. doi: 10.1016/S0960-894X(01)80325-5 DOI: https://doi.org/10.1016/S0960-894X(01)80325-5
Michael JP, Quinoline, Quinazoline and acridone alkaloids, Nat. Prod. Rep. 2004, 21, 5, 650-668. doi: 10.1039/b310691h DOI: https://doi.org/10.1039/b310691h
Craig, JC, Person PE, Potential antimalarials. 7. Tribromomethylquinolines and positive halogen compounds, J. Med. Chem. 1971, 14, 12, 1221-1222. doi: 10.1021/jm00294a022 DOI: https://doi.org/10.1021/jm00294a022
Dillard RD, Pavey DE, Benslay DN, Synthesis and antiinflammatory activity of some 2,2-dimethyl-1,2-dihydroquinolines, J. Med. Chem. 1973, 16, 3, 251-253. doi: 10.1021/jm00261a019 DOI: https://doi.org/10.1021/jm00261a019
De Souza MV, Pais KC, Kaiser CR, Peralta MA, Ferreira MdeL, Lourenço MC, Synthesis and in vitro antitubercular activity of a series of quinoline derivatives, Bioorg. Med. Chem.2009, 17, 4, 1474-1480. doi: 10.1016/j.bmc.2009.01.013 DOI: https://doi.org/10.1016/j.bmc.2009.01.013
Shi A, Nguyen TA, Battina SK, Rana S, Takemoto DJ, Chiang PK, Hua DH, Synthesis and anti-breast cancer activities of substituted quinolines, Bioorg. Med. Chem.Lett. 2008, 18, 11, 3364-3368. doi: 10.1016/j.bmcl.2008.04.024 DOI: https://doi.org/10.1016/j.bmcl.2008.04.024
Lohray BB, Bhushan V, Reddy AS, Rao PB, Reddy NJ, Harikishore P, Haritha N, Vikramadityan RK, Chakrabarti R, Rajagopalan R, Katneni K, Novel euglycemic and hypolipidemic agents. 4. Pyridyl- and quinolinyl-containing thiazolidinediones, J. Med. Chem. 1999, 42, 14, 2569-2581. doi: 10.1021/jm980622j DOI: https://doi.org/10.1021/jm980622j
Ryabukhin SV, Plaskon AS, Volochnyuk DM, Shivanyuk N, Tolmachev AA, A one-pot fusion of Nitrogen-containing Heterocycles, Synthesis 2007, 18, 2872-2886. doi: 10.1055/s-2007-983842 DOI: https://doi.org/10.1055/s-2007-983842
Devi I, Baruah B, Bhuyan PJ, α-cyclisation of tertiary amines: Synthesis of some novel Annelated quinolines via a three-component reaction under solvent-free conditions, Synlett 2006, 16, 2593-2596. doi: 10.1055/s-2006-951477 DOI: https://doi.org/10.1055/s-2006-951477
Mali JR, Pratap UR, Netankar PD, Mane RA, An efficient synthetic route for quinazolinyl 4-thiazolidiones, Tetrahedron Lett. 2009, 50, 35, 5025-5027. doi: 10.1016/j.tetlet.2009.06.086 DOI: https://doi.org/10.1016/j.tetlet.2009.06.086
Mahalle S, Ligampalle D, Mane R, Microwave-assisted synthesis of some 2,4-thiazolidinedione derivatives, Heteroatom Chem. 2009, 20, 3, 151-156. doi: 10.1002/hc.20528 DOI: https://doi.org/10.1002/hc.20528
Nair V, Vinod AU, Rajesh C, A novel synthesis of 2-aminopyrroles using three-component reaction, J. Org. Chem. 2001, 66, 12, 4427-4429. doi: 10.1021/jo001714v DOI: https://doi.org/10.1021/jo001714v
List B, Castello C, A novel proline-catalyzed three-component reaction of Ketones, Aldehydes and Meldrum’s Acid, Synlett 2001, 0, 11, 1687-1689. doi: 10.1055/s-2001-18095 DOI: https://doi.org/10.1055/s-2001-18095
Bertozzi F, Gustafsson M, Olsson R, A novel metal iodide promoted three-component synthesis of substituted pyrrolidines, Org. Lett. 2002, 4, 18, 3147-3150. doi: 10.1021/ol0264814 DOI: https://doi.org/10.1021/ol0264814
Yuan Y, Li X, Ding K, Acid-free aza Diels-Alder reaction of Danishefsky’s diene with imines, Org. Lett. 2002, 4, 19, 3309-3311. doi: 10.1021/ol0265822 DOI: https://doi.org/10.1021/ol0265822
Cheng J-F, Chen M, Arrhenius T, Nadzan A, A convenient solution and Δ5-2-oxopiperazines via N-acyliminium ions cyclization, Tetrahedron Lett. 2002, 43, 36, 6293-6295. doi: 10.1016/S0040-4039(02)01403-X DOI: https://doi.org/10.1016/S0040-4039(02)01403-X
Bora U, Saikia A, Boruah RC, A novel microwave-mediated one-pot synthesis of indolizines via a three-component reaction, Org. Lett. 2003, 5, 4, 435-438. doi: 10.1021/ol020238n DOI: https://doi.org/10.1021/ol020238n
Dallinger D, Gorobets NY, Kappe CO, High-throughput synthesis of N3-acylated dihydropyrimidines combining microwave-assisted synthesis and scavenging techniques, Org. Lett.2003, 5, 1205-1208. doi: 10.1021/ol034085v DOI: https://doi.org/10.1021/ol034085v
Jaware J, Borhade S, Synthesis and novel N-{[2-(morpholin-4-yl)-quinoline-3-yl]methyl}2-[(4-aminopentyl)(ethyl)amino]ethanol derivatives, Indo Am. J. Pharm. Res., 2014, 4, 5, 2496–2502.
Meth-Cohn O, The synthesis of pyridines, quinolines and other related system by the Vilsmeier method, Heterocycles, 1993, 35, 1, 539–557, doi: 10.3987/rev-92-sr4. DOI: https://doi.org/10.3987/REV-92-SR4
Meth-Cohn O, Narine B, Tarnowski BA, A versatile new synthesis of quinolines and related fused pyridines, Part 5. The synthesis of 2-chloroquinoline-3-carbaldehyde, J. Chem. Soc., Perkin Trans. 1, 1981, 1520–1530. doi: 10.1039/p19810001520 DOI: https://doi.org/10.1039/p19810001520
Romero AH, Modified procedure for the synthesis of 2-chloroquinoline-3-carbaldehydes using phosphorus pentachloride, Synth. Commun., 2016, 46, 3, 287–291. doi: 10.1080/00397911.2015.1135956 DOI: https://doi.org/10.1080/00397911.2015.1135956
Tekale AS, Mukhedker SS, Shaikh SAL, A highly efficient synthesis of 2-chloro-3-formyl-8-methyl quinoline: Vilsmeier-haack reagent, Int. J. Chem. Stud., 2015, 2, 6, 42–45
Tekale AS, Shaikh SAL, Tirpude HA, Evaluation of Novel 2-Chloro Quinoline-3- Carbaldehyde derivatives, Int. J. Chem. Stud., 2016, 4, 6, 95–98
Toth J, Blasko G, Dancso A, Toke L, Nyerges M, Synthesis of new quinoline derivatives, Synth. Commun., 2006, 36, 23, 3581–3589. doi: 10.1080/00397910600943568 DOI: https://doi.org/10.1080/00397910600943568
Meth-Cohn O, Narine B, A versatile new synthesis of quinolines, theinopyridines and related fused pyridines, Tetrahedron Lett., 1978, 19, 23, 2045–2048. doi: 10.1016/s0040-4039(01)94745-8 DOI: https://doi.org/10.1016/S0040-4039(01)94745-8
Nayak G, Shrivastava B, Singhai AK, Azitidin-2-one fused quinoline analogues: Synthesis and Biological evaluation of some novel 2-chloro-3-formyl quinoline derivatives, Int. J. Curr. Pharm. Res., 2016, 8, 3, 64–67. DOI: https://doi.org/10.13005/ojc/320423
Zaheer Z, Khan FAK, Sangshetti JN, Patil RH, Lohar KS, Novel amalgamation of phthalazine–quinolines as biofilm inhibitors: One-pot synthesis, biological evaluation and in silico ADME prediction with favorable metabolic fate, Bioorg. Med. Chem. Lett., 2016, 26, 7, 1696–1703. doi: 10.1016/j.bmcl.2016.02.057 DOI: https://doi.org/10.1016/j.bmcl.2016.02.057
Jia W, Liu Y, Li W, Liu Y, Zhang D, Zhang P, Gong P, Synthesis and in vitro anti-hepatitis B virus activity of 6H-[1]benzothiopyrano[4,3-b]quinolin-9-ols, Bioorg. Med. Chem., 2009, 17, 12, 4569–4574. doi: 10.1016/j.bmc.2009.05.001 DOI: https://doi.org/10.1016/j.bmc.2009.05.001
Rao PV, Kailas G, Microwave assisted synthesis and antibacterial activities of some (E)-1-phenyl-3-(2-thiomorpholinoquinolin-3-yl)prop-2-en-1-one using basic catalyst, Int. J. Chem. Sci., 2014, 12, 4, 1577–1586.
Wang D-W, Lin H-Y, Cao R-J, Chen T, Wu F-X, Hao G-F, Chen Q, Yang W-C,Yang G-F, Synthesis and Herbicidal Activity of Triketone–Quinoline Hybrids as Novel 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors, J. Agric. Food Chem., 2015, 63, 23, 5587–5596. doi: 10.1021/acs.jafc.5b01530 DOI: https://doi.org/10.1021/acs.jafc.5b01530
Gohil JD, Patel HB, Patel MP, Comparative study on the use of conventional, microwave and ultrasound-irradiation for the synthesis of pyrano[3,2-c]chromene and benzopyrano[4,3-b]chromene derivatives in water, Heterocycl. Lett., 2016, 6, 1, 123–132.
Murugesan A, Gengan RM, Krishnan A, Sulfonic acid functionalized boron nitride nano materials as a microwave-assisted efficient and highly biologically active one-pot synthesis of piperazinyl-quinolinyl fused Benzo[c]acridine derivatives, Mater. Chem. Phys., 2017, 188, 154–167. doi: 10.1016/j.matchemphys.2016.12.039 DOI: https://doi.org/10.1016/j.matchemphys.2016.12.039
Subhedar DD, Shaikh MH, Shingate BB, Nawale L, Sarkar D, Khedkar VM, Khan FAK, Sangshetti JN, Quinolidene-rhodanine conjugates: Facile synthesis and biological evaluation, Eur. J. Med. Chem., 2016, 125, 385–399. doi: 10.1016/j.ejmech.2016.09.059 DOI: https://doi.org/10.1016/j.ejmech.2016.09.059
Cantello BCC, Cawthorne MA, Cottam GP, Duff PT, Haigh D, Hindley RM, Lister CA, Smith SA, Thurlby PL, [[omega-(Heterocyclylamino)alkoxy]benzyl]-2,4-thiazolidinediones as potent antihyperglycemic agents, J. Med. Chem. 1994, 37, 23, 3977-3985. doi: 10.1021/jm00049a017 DOI: https://doi.org/10.1021/jm00049a017
Kucukguzel G, Kocatepe A, Clercq E De, Sahin F, Gulluce M, Synthesis and biological activity of 4-thiazolidinones, thiosemicarbazides derived from diflunisal hydrazide, Eur. J. Med. Chem. 2006, 41, 353-359. DOI: https://doi.org/10.1016/j.ejmech.2005.11.005
Naeem M, Chaudhary MN, Baloch FH, Amjad R, Greener approach to the synthesis of 4-thiazolidinone derivatives using phase transfer catalysts under microwave irradiation, J.chem.soc.pak, 2009, 31, 4, 633-637.
Sharma MC, Sahu NK, Kohali DV, Chaturvedi SC, Sharma S, QSAR, Synthesis and Biological activity studies of some thiazolidinones derivatives, Digest journal of Nanomaterials and Bio structures, 2009, 4, 1, 223-232.
Patel RB, Desai PS, KR Desai KR, Chikhalia KH, Synthesis of pyrimidine based thiazolidinones and azetidinones: Antimicrobial and antitubercular agents, Indian journal of chemistry, 2006, 45B, 773-778. DOI: https://doi.org/10.1002/chin.200628143
Turgut Z, Yolacan C, Aydogan F, Bagdatli E, Ocal N, Synthesis of New Pyrazolothiazole Derivatives from 4-Thiazolidinones, Molecules, 2007, 12, 2151-2159. doi: 10.3390/12092151 DOI: https://doi.org/10.3390/12092151
Bouzroura S, Bentarzi Y, Kaoua R, Kolli BN, Martini SP, Dunach E, A convenient one pot preparation of 4-thiazolidinones from enaminolactones, Org. Commun, 2010, 3, 1, 8-14.
Mistry KM, Desai KR, Synthesis of Novel Heterocyclic 4-Thiazolidinone Derivatives and their Antibacterial Activity, E-journal of chemistry, 2004, 1, 4, 189-193. doi: 10.1155/2004/590439 DOI: https://doi.org/10.1155/2004/590439
Shah N, Pant PC, Joshi PC, Asian J. chem., 1993, 95, 83.
Ramalakshmi N, Aruloly L, Arunkumar S, Ilango K, Puratchikody A, Synthesis and Biological Evaluation of Some Novel Nicotinic Acid Derivatives, Malaysian journal of science, 2009, 28, 2, 197-203. doi: 10.22452/mjs.vol28no2.8 DOI: https://doi.org/10.22452/mjs.vol28no2.8
Patel NB, Patel VN, Synthesis and antimicrobial evaluation of new (4-oxo-thiazolidinyl) quinazolin-4(3H) ones of 2-[(2,6-dichlorophenyl)amino]phenylacetic acid, Iranian journal of pharmaceutical research, 2007, 6, 4, 251-258.
Vigorita MG, Ottana R, Monforte F, Maccari R, Trovato A, Monforte MT, Taviang MF, Synthesis and antiinflammatory, analgesic activity of 3,3′-(1,2-Ethanediyl)-bis[2-aryl-4-thiazolidinone] chiral compounds. Part 10, Bioorg. Med.Chem.Lett, 2001, 11, 21, 2791-2794. doi: 10.1016/s0960-894x(01)00476-0 DOI: https://doi.org/10.1016/S0960-894X(01)00476-0
Murugesan V, Prabhakar YS, Katti SB, CoMFA and CoMSIA studies on thiazolidin-4-one as anti-HIV-1 agents, J. Mol. Graph. Model. 2009, 27, 735-743. doi: 10.1016/j.jmgm.2008.11.006 DOI: https://doi.org/10.1016/j.jmgm.2008.11.006
Balzarini J, Orzeszko-Krzesinska B, Maurin JK, Orzesko A, Synthesis and anti-HIV studies of 2- and 3-adamantyl-substituted thiazolidin-4-ones, Eur. J. Med. Chem., 2009, 44, 303-311. doi: 10.1016/j.ejmech.2008.02.039 DOI: https://doi.org/10.1016/j.ejmech.2008.02.039
Pattan SR, Suresh C, Pujar VD, Reddy VVK, Rasal VP, Koti BC, Synthesis and antidiabetic activity of 2-amino [5'(4-sulphonylbenzylidine)-2,4-thiazolidinedione]-7-chloro-6-fluorobenzothiazole, Indian J. Chem., 2005, 44B, 2404-2408.
Pattan SR, Kekare P, Dighe NS, Bhawar SB, Hole MB, Nikalje A, Pati A, Synthesis and Evaluation of Some New Thiazolidinedione Derivatives for Their Antidiabetic Activities, Asian J. Research Chem. 2009, 2, 2, 123-126.
