Synthesis, Molecular Docking, Biological Screening and Antioxidant Studies of Substituted 1, 3-Diketones with Their Transition Metal (II) Complexes
DOI:
https://doi.org/10.32628/IJSRCH2510602Keywords:
1, 3-diones, Metal complexes, Antimicrobial, Antioxidants and Molecular dockingAbstract
Three series of 1, 3-diones 4(LA- LC) and their transition metal (II) complexes 5LA (a-e), 5LB (a-e) and 5LC (a-e) have been synthesized, spectroscopically characterized and their in vitro efficacies were evaluated. Bidentate ligands were derived from substituted aromatic acids and substituted orthohydroxy acetophenone under ultrasound irradiation methods at low temperature. The simple substitution reactions between the metal nitrate and ligands yielded the titled complexes. However, in situ procedure gives high yield with formation of single products as evident by TLC. Elemental analysis, IR, 1H and 13C-NMR , Massspectra, UV-Vis., magnetic susceptibility and conductance measurements were done to characterize the ligands and their metal complexes [where, M= Mn (II), Fe (III), Co (II), Ni (II) and Cu (II) ]. All the evidences suggested that the complexes have octahedral geometry. The stoichiometry of the complexes was found to be 1:2 (metal: ligand). The conductivity data show that the complexes are non-electrolyte in nature. The antioxidants activity of the ligands and their metal (II) complexes have been carried out using DPPH free radical scavenging activity and found to be most effective. The antibacterial and antifungal activity of the ligands and their complexes have been carried out and on the basis the molecular docking studyagainst the peptide deformylase of the most effective complexes has been reported.
References
X. Xu, T. Xu, J. Gao, M. Wang, S. Niu, S. Ni, G. Xu, Inorg. Met.Org. Nano-Met. Chem. 36 (2006) 681–686. DOI: https://doi.org/10.1080/15533170600962521
C.R. Bhattacharjee, P. Goswami, P. Mondal, J. Coord. Chem. 63 (2010) 2002–2011. DOI: https://doi.org/10.1080/00958972.2010.495405
G.D. Crouse, M.J. McGowan, R.J. Boisvenue, J. Med. Chem. 32 (1989) 2148e2151. DOI: https://doi.org/10.1021/jm00129a021
T. Nishiyama, S. Shiotsu, H. Tsujita, Polym. Degrad. Stab. 76 (2002)435e439. DOI: https://doi.org/10.1016/S0141-3910(02)00046-0
N. Acton, A. Brossi, D.L. Newton, M.B. Sporn, J. Med. Chem. 23 (1980) 805e809. DOI: https://doi.org/10.1021/jm00181a019
J. Sheikh, V. Ingle, H. Juneja, E-J. Chem. 6 (2009)705e712. DOI: https://doi.org/10.1155/2009/693495
R.C. Maurya, P. Sharma, D. Sutradhar, Inorg. Met.Org. Nano-Met. Chem. 33 (2003) 669–682. DOI: https://doi.org/10.1081/SIM-120020331
Y.T. Li, C.W. Yan, C.Y. Zhu, H.S. Guan, Inorg. Met-Org. Nano-Met. Chem. 34 (2005) 1165–1179. DOI: https://doi.org/10.1081/SIM-120039264
Y. Aydogdu, F. Yakuphanoglu, A. Aydogdu, E. Tas, A. Cukurovali, Mater. Lett. 4 (2002)879–883. DOI: https://doi.org/10.1016/S1293-2558(02)01298-0
N.S. Youssef, E.A. El Zahany, M.M. Ali, 185 (2010) 2171–2181. DOI: https://doi.org/10.1080/10426500903241739
A. Baxter, C. Bennion, J. Bent, K. Boden, S. Brough, A. Cooper, E. Kinchin, N. Kindon, T. Mcinally, M. Mortimore, B. Roberts, J. Biol. Med. Chem. Lett. 13 (2003) 2625–2628. DOI: https://doi.org/10.1016/S0960-894X(03)00561-4
D. Farhanullah, B.K. Tripathi, A.K. Shrivastava, V.J. Ram, Bioorg. Med. Chem. Lett. 14 (2004) 2571–2574. DOI: https://doi.org/10.1016/j.bmcl.2004.02.079
B.T. Khan, K. Najmuddin, S. Shamsuddin, S.M. Zakeeruddin, Inorg. Chim. Acta 709 (1990) 129–133. DOI: https://doi.org/10.1016/S0020-1693(00)80419-3
B.T. Khan, K. Venkatasubramanian, K. Najmuddin, S. Shamsuddin, S.M. Zakeeruddin, Inorg. Chim. Acta179 (1991) 117–123. DOI: https://doi.org/10.1016/S0020-1693(00)85382-7
M.S. Refat, I.M. El-Deen, M.A. Zein, A.M.A. Adam, M.I. Kobeasy, Int. J. Electrochem. Sci. 8(2)
Y. Tor, Targeting RNA with small molecules, Chembiochem 4 (2003) 998–1007.0139894–9917. DOI: https://doi.org/10.1002/cbic.200300680
N. Farrell, in: J.A.McCleverty, T.J. Meyer (Eds.), Comprehensive Coordination Chemistry II, Pergamum, Oxford 2003, p. 809. DOI: https://doi.org/10.1016/B0-08-043748-6/09021-6
B.M. Zeglis, V.C. Pierre, J.K. Barton, Chem. Commun. 44 (2007) 4565–4579. DOI: https://doi.org/10.1039/b710949k
J. Sheikh et al. / European Journal of Medicinal Chemistry 46 (2011) 1390e1399
V. Thamilarasan et al. / Journal of Photochemistry & Photobiology, B: Biology 160 (2016) 110–120 DOI: https://doi.org/10.1016/j.jphotobiol.2016.03.018
S.A.A.Nami et.al/ journal of photochemistry and photobiology, B: 160 (2016) 392-399 DOI: https://doi.org/10.1016/j.jphotobiol.2016.05.010
Z. H. Chohan, M. Arif, M. A. Akhtar, and C. T. Supuran J. Bioinorganic Chemistry and Applications, vol., Article ID 83 (2006)131, 13 pages. DOI: https://doi.org/10.1155/BCA/2006/83131
N. S. Korde, S. T. Gaikwad, B. C. Khade, A. S. Rajbhoj. Chem. Sci. Trans.2(2013).
Nanda S. Korde, Suresh T. Gaikwad, Seems S. Korde, Anjali S. Rajbhoj J. of Rec. Tech. and Engine; 2:4 (2013) DOI: https://doi.org/10.7598/cst2013.355
U. Kumar, S. Chandra J. Saudi Chem. Soc. 15(2011) 187–193. DOI: https://doi.org/10.1016/j.jscs.2010.08.002
V.K. Revankar, V.B. Mahale Indian J. Chem. A 28(1979) 683.
Satyajit D. Sarker, Lutfun Nahar, Yashodharan Kumarasamy phytochem.42,(2007)321–324 DOI: https://doi.org/10.1016/j.ymeth.2007.01.006
Michel F. Sanner. J. Mol. GraphicsMod. 17,(1999) 57-61. DOI: https://doi.org/10.3917/psca.017.0057
K. Mohanan, S.N. Devi Russ. J. Coord. Chem. 32(2006)600. DOI: https://doi.org/10.1134/S1070328406080124
P.S. Mane, S.G. Shirodkar, B.R. Arbad, T.K. Chondhekar Indian J. Chem.40(2001) 648.
